These sums were taken from the book Number Theory by George E. Andrews
What is the equation for each of the following sums that gives the sum for a given n:
(1) 1+2+3+⋯+n=n(n+1)2 since:
- 2(1+2+3+⋯+n)= ([1+2+3+⋯+n]+[n+(n−1)+(n−2)+⋯+1])= (1+n)+(2+[n−1])+(3+[n−2])+⋯+(n+1)=(n)(n+1)
(2) 12+22+32+⋯+n2=n(n+1)(2n+1)6 since:
- Binomial Theorem: (x+y)p=p∑k=0(pk)xp−kyk
- (n−1)3=n3−3n2+3n−1
- n3−(n−1)3=3n2−3n+1
- n(n+1)(2n+1)=(2n+1)(n2+n)=2n3+2n2+n2+n= 2n3+3n2+n
- n3= n3−(n−1)3+(n−1)3−(n−2)3+⋯+13−0= 3(n2+(n−1)2+…12)−3(n+(n−1)+⋯+1)+n(1)= 3(12+22+⋯+n2)−3(n(n+1)2)+n
- n3+3(n(n+1)2)−n= 2n3+3n2+3n−2n2= 2n3+3n2+n2= (n)(n+1)(2n+1)2= 3(n2+(n−1)2+…12)
(3) 13+23+33+⋯+n3=(n(n+1)2)2 since:
- (n−1)4=n4−4n3+6n2−4n+1
- n4−(n−1)4=4n3−6n2+4n−1
- [n(n+1)]2=n2(n2+2n+1)=n4+2n3+n2
- n4=n4−(n−1)4+(n−1)4−(n−2)4+⋯+14−04= 4(n3+(n−1)3+⋯+13)−6(n2+(n−1)2+⋯+12)+4(n+(n−1)+⋯+1)−n= 4(13+23+⋯+n3)−6(2n3+3n2+n6)+4(n(n+1)2)−n
- n4+6(2n3+3n2+n6)−4(n2+n)2)+n= n4+2n3+3n2+n−2n2−2n+n= n4+2n3+n2= [n(n+1)]2=4(13+23+⋯+n3)
(4) 1+x+x2+x3+⋯+xn=xn+1−1x−1 since:
- x(1+x+x2+x3+⋯+xn)=x+x2+x3+x4+⋯+xn+1
- (x−1)(1+x+x2+x3+⋯+xn)=xn+1−1
(5) 1×2+2×3+3×4+⋯+(n)(n+1)=n(n+1)(n+2)3 since:
- n(n+1)=n2+n
- 1×2+2×3+3×4+⋯+(n)(n+1)= (12+1)+(22+2)+(32+3)+⋯++(n2+n)= (1+2+3+⋯+n)+(12+22+32+⋯+n2)= n(n+1)2+n(n+1)(2n+1)6= (3n+2n2+n)(n+1)6=(n2+2n)(n+1)3
(6) 1+3+5+⋯+(2n−1)=n2 since:
- 1+3+5+⋯+(2n−1)= 2(1+2+3+⋯+n)−n= n(n+1)−n=n2+n−n
(7) 11×2+12×3+13×4+⋯+1n(n+1)=nn+1 since:
- 11×2+12×3+13×4+⋯+1n(n+1)= 2−11×2+3−22×3+4−33×4+⋯+(n+1)−nn(n+1)= (1−12)+(12−13)+(13−14)+⋯+(1n−1n+1)= 1−1n+1=n+1−1n+1
No comments:
Post a Comment