(1) Assume that $\sum\limits_{i=1}^n \left(\dfrac{1}{i}\right)$ is convergent so that there exists $H$ such that:
$$H = \sum\limits_{i=1}^n \left(\dfrac{1}{i}\right) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$
(2) $H \ge 1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{6} + \dfrac{1}{6} + \dfrac{1}{8} + \dfrac{1}{8} + \dots =$
$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \frac{1}{2} + H$$
(3) Since we have reached a contradiction, we can reject the assumption and conclude that the sequence is divergent.
No comments:
Post a Comment