Processing math: 100%

What is the value of limn(1+xn)n (with answer)

limn(1+xn)n=ex since:


(1)  For x=0, limn(1+0n)n=1=e0

(2)  So we can assume that x0 so that:

limn(1+xn)n=limnenln(1+xn)=limnexln(1+x/nx/n)

(3)  Since limn1+x/nx/n=limh01+hh:

limnexln(1+x/nx/n)=limh0exln(1+hh)=exlimh0(ln[1+hh])

(4)  Since limh0ln(1+h)h=1 (see here if needed):

exlimh0(ln[1+hh])=ex


No comments:

Post a Comment

e: limn(1+1n)n = limnni=0(1i!)

limn(1+1n)n = limnni=0(1i!) since: (...