limn→∞(1+xn)n=ex since:
(1) For x=0, limn→∞(1+0n)n=1=e0
(2) So we can assume that x≠0 so that:
limn→∞(1+xn)n=limn→∞enln(1+xn)=limn→∞exln(1+x/nx/n)
(3) Since limn→∞1+x/nx/n=limh→01+hh:
limn→∞exln(1+x/nx/n)=limh→0exln(1+hh)=exlimh→0(ln[1+hh])
(4) Since limh→0ln(1+h)h=1 (see here if needed):
exlimh→0(ln[1+hh])=ex
No comments:
Post a Comment