limn→∞(1+1n)n = limn→∞n∑i=0(1i!) since:
(1) Since, it can be shown that both limn→∞(1+1n)n and limn→∞(1n!), the only remaining point is to show that:
limn→∞(1+1n)n=limn→∞1+1+12!(1−1n)+13!(1−1n)(1−2n)+⋯+ +1n!(1−1n)(1−2n)…(1−n−1n)=10!+11!+12!+13!+⋯+1n!
No comments:
Post a Comment