Processing math: 100%

limn(1+1n)n converges

limn(1+1n)n converges since:

(1)  From the binomial theorem:  

(1+1n)n=nk=0(nk)(1n)k= =1+n!(n1)!(1n)+n!(n2)!2!(1n)2+n!(n3)!3!(1n)3++n!n!(1n)n

=1+1+n12!(1n)+(n1)(n2)3!(1n)2++(n1)(n2)(2)n!(1n)n1

=1+1+12!(11n)+13!(11n)(12n)++ +1n!(11n)(12n)(1n1n)10!+11!+12!+13!++1n!

(2) From this result, we know that limnni=0(1i!) converges.


No comments:

Post a Comment

e: limn(1+1n)n = limnni=0(1i!)

limn(1+1n)n = limnni=0(1i!) since: (...