Processing math: 100%

Pascal's Identity: (nr1)+(nr)=(n+1r)?

Here's the proof:

(1)  The definition of the binomial coefficient is:
(nr)=n(n1)××(nr+1)r!

(2)  This analysis will assume that n,r are integers.

(3)  If r>n+1, it follows that Pascal's Identity is trivially true since 0=(nr1)=(nr)=(n+1r) so we can assume that rn+1

(4) (nr1)+(nr)=n!(r1)!(nr+1)!+n!r!(nr)!=
=n!(rr!(nr+1)!+nr+1r!(nr+1)!)=n!(n+1)r!(nr+1)!=(n+1r)

No comments:

Post a Comment

e: limn(1+1n)n = limnni=0(1i!)

limn(1+1n)n = limnni=0(1i!) since: (...