(1) The definition of the binomial coefficient is:
(nr)=n(n−1)×⋯×(n−r+1)r!
(2) This analysis will assume that n,r are integers.
(3) If r>n+1, it follows that Pascal's Identity is trivially true since 0=(nr−1)=(nr)=(n+1r) so we can assume that r≤n+1
(4) (nr−1)+(nr)=n!(r−1)!(n−r+1)!+n!r!(n−r)!=
=n!(rr!(n−r+1)!+n−r+1r!(n−r+1)!)=n!(n+1)r!(n−r+1)!=(n+1r)
No comments:
Post a Comment