$\sum\limits_{n=0}^\infty\left(\dfrac{1}{n!}\right)$ converges since:
(1) $\sum\limits_{n=0}^\infty\left(\dfrac{1}{n!}\right) = \dfrac{1}{0!} + \dfrac{1}{1!} + \dfrac{1}{2!} + \dfrac{1}{3!} + \dots + \dfrac{1}{n!} = $
$$= 1 + 1 + \frac{1}{1\times{2}} + \frac{1}{1\times{2}\times{3}} + \dots + \frac{1}{1\times{2}\times{3}\times\dots{n}} <$$
$$< 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}$$
(2) Let $u = 1 + \dfrac{1}{2} + \dfrac{1}{2^2} + \dots + \dfrac{1}{2^{n-1}}$
(3) $u - \dfrac{1}{2}u = \dfrac{1}{2}u = 1 - \dfrac{1}{2^n}$ so that $u = 2 - \dfrac{1}{2^{n-1}} < 2$
(4) So it follows that $\sum\limits_{n=0}^\infty\left(\dfrac{1}{n!}\right) < 1+2=3$
No comments:
Post a Comment