∞∑n=0(1n!) converges since:
(1) ∞∑n=0(1n!)=10!+11!+12!+13!+⋯+1n!=
=1+1+11×2+11×2×3+⋯+11×2×3×…n<
<1+1+12+122+⋯+12n−1
(2) Let u=1+12+122+⋯+12n−1
(3) u−12u=12u=1−12n so that u=2−12n−1<2
(4) So it follows that ∞∑n=0(1n!)<1+2=3
limn→∞(1+1n)n = limn→∞n∑i=0(1i!) since: (...
No comments:
Post a Comment