Loading [MathJax]/jax/output/HTML-CSS/jax.js

n=0(1n!) converges

n=0(1n!) converges since:

(1) n=0(1n!)=10!+11!+12!+13!++1n!=

=1+1+11×2+11×2×3++11×2×3×n<

<1+1+12+122++12n1    

(2)  Let u=1+12+122++12n1 

(3)  u12u=12u=112n so that u=212n1<2

(4)  So it follows that n=0(1n!)<1+2=3

No comments:

Post a Comment

e: limn(1+1n)n = limnni=0(1i!)

limn(1+1n)n = limnni=0(1i!) since: (...